redis占用内存大小我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小 。
1、通过配置文件配置【面试被问:Redis 内存满了怎么办?】通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小
//设置Redis最大占用内存大小为100Mmaxmemory 100mb
redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的2、通过命令修改Redis支持运行时通过命令动态修改内存大小
//设置Redis最大占用内存大小为100M127.0.0.1:6379> config set maxmemory 100mb//获取设置的Redis能使用的最大内存大小127.0.0.1:6379> config get maxmemory如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存Redis的内存淘汰既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候 。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?
实际上Redis定义了几种策略用来处理这种情况:
- noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
- allkeys-lru:从所有key中使用LRU算法进行淘汰
- volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
- allkeys-random:从所有key中随机淘汰数据
- volatile-random:从设置了过期时间的key中随机淘汰
- volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰
当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误如何获取及设置内存淘汰策略获取当前内存淘汰策略:
127.0.0.1:6379> config get maxmemory-policy通过配置文件设置淘汰策略(修改redis.conf文件):maxmemory-policy allkeys-lru通过命令修改淘汰策略:127.0.0.1:6379> config set maxmemory-policy allkeys-lruLRU算法什么是LRU?上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法 。使用JAVA实现一个简单的LRU算法
在使用内存作为缓存的时候,缓存的大小一般是固定的 。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据 。
这个时候就可以使用LRU算法了 。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉 。
public class LRUCache<k, v> { //容量 private int capacity; //当前有多少节点的统计 private int count; //缓存节点 private Map<k, node> nodeMap; private Node head; private Node tail; public LRUCache(int capacity) { if (capacity < 1) { throw new IllegalArgumentException(String.valueOf(capacity)); } this.capacity = capacity; this.nodeMap = new HashMap<>(); //初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码 Node headNode = new Node(null, null); Node tailNode = new Node(null, null); headNode.next = tailNode; tailNode.pre = headNode; this.head = headNode; this.tail = tailNode; } public void put(k key, v value) { Node node = nodeMap.get(key); if (node == null) { if (count >= capacity) { //先移除一个节点 removeNode(); } node = new Node<>(key, value); //添加节点 addNode(node); } else { //移动节点到头节点 moveNodeToHead(node); } } public Node get(k key) { Node node = nodeMap.get(key); if (node != null) { moveNodeToHead(node); } return node; } private void removeNode() { Node node = tail.pre; //从链表里面移除 removeFromList(node); nodeMap.remove(node.key); count--; } private void removeFromList(Node node) { Node pre = node.pre; Node next = node.next; pre.next = next; next.pre = pre; node.next = null; node.pre = null; } private void addNode(Node node) { //添加节点到头部 addToHead(node); nodeMap.put(node.key, node); count++; } private void addToHead(Node node) { Node next = head.next; next.pre = node; node.next = next; node.pre = head; head.next = node; } public void moveNodeToHead(Node node) { //从链表里面移除 removeFromList(node); //添加节点到头部 addToHead(node); } class Node<k, v> { k key; v value; Node pre; Node next; public Node(k key, v value) { this.key = key; this.value = value; } }}
推荐阅读
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Redis为什么会这么快,看完这七点你就知道了
- Redis Sentinel基本实现原理
- 彻底搞懂Redis的线程模型
- Redis不只是缓存,还有n多种你没发现的妙用
- 8年程序员跳槽,60天面试腾讯百度等70家公司,总结出几个共同点
- 如何设计秒杀系统?
- 面试最后一问:你还有什么想了解的,正确的回答是这样
- 开会时被问“你有什么意见?”这样讲,就能让老板“高看一眼”
- 小米Redis的K8s容器化部署实践
- 浅析scrapy与scrapy_redis区别
