CAF的原理与解决方案

目录

  • What is ECM/SIR?
  • What is CAF?
  • ECM/SIR与CAF的共同点与差异点
  • ECM/SIR与CAF的重要性
  • ECM/SIR/CAF的原理
  • 离子迁移(ECM/SIR/CAF)的要因分析与解决方案
  • ECM/SIR/CAF失效案例分析
  • ECM/SIR/CAF test coupon 设计方案
  • End
What is ECM/SIR?
ECM: Electro Chemical Migration,电化学迁移;
按IPC-9201 (表面绝缘电阻手册)的说法,是当完成电路板或组装板,长久高温高湿之恶劣环境中,且其相邻导体间会出现偏压(Bias)的情况下,会逐渐发生金属离子性物体的迁移,并在板面上出现树枝盐类生长的痕迹者 (Dendrites),称为ECM;
CAF的原理与解决方案

文章插图
 
SIR: Surface Insulation Resistance,表面绝缘电阻;
SIR是通过测试表面绝缘电阻的方法来监控ECM电化学迁移的发生程度;
通常我们习惯讲的SIR,即为ECM测试;
CAF的原理与解决方案

文章插图
 
What is CAF?
CAF:Conductive Anodic Filament 导电性阳极丝,即玻纤纱束漏电;
ECM是发生在板面上,其树枝状可目视观察得到 。CAF是电路板镀孔后相邻的通孔铜壁间在恶劣的环境中,而出现铜离子沿着玻纤发生缓慢迁移的行为, 进而出现漏电,则只发生在玻纤束中,通常很难察觉到真相,微切片是比较可行的方法 。
CAF的原理与解决方案

文章插图
 
ECM/SIR与CAF的共同点与差异
共同点:
  • 从产生的原因看:
  • CAF与ECM/SIR都是一个电化学过程;
  • 从产生的条件来看(都需要符合下面3个条件):
  • 电解液环境,即湿度与离子(Electrolyte – humidity and ionic species);
  • 施加偏压(Voltage bias – Force that drives the reaction); ·
  • 存在离子迁移的通道意味着玻纤与树脂的结合间存在缺陷,或线与线间存在杂物等;(“Pathway” – A way for the ions to move from the anode to the cathode;The pathway is along the glass fibers when the resin impregnation to the glass fibers have defects);
  • 加剧其产生的条件类似:
  • 高湿环境(High humidity rate);
  • 高电压(Higher Voltage levels);
  • 高温环境(Higher temperature);
  • 从监控的方式看:
  • 都是通过监控其绝缘阻值变化作为最重要的判断指标;
故很多汽车行业或实验室已习惯上把ECM/SIR从广义上定义 为CAF的一种(线与线之间的表面CAF) 。
差异点:
  • 从产生的原因看:
  • ECM/SIR是在PCB的表面产生金属离子的迁移;而CAF 是发生在PCB的内部出现铜离子沿着玻纤发生缓慢迁移, 进而出现漏电;
  • 从产生的现象看:
  • ECM/SIR会在导体间出现枝丫状(Dendrite)物质;而CAF则是出现在孔~孔、线~线、层~层、孔~线间,出现阳极金属丝;
  • 从监控的方式看(除阻值监控外):
  • ECM/SIR可以通过放大镜进行直观的判断;而CAF只能通过破坏性的切片进行微观条件下的分析;

CAF的原理与解决方案

文章插图
 
ECM/SIR与CAF的重要性
由于介电层变薄、线路及孔距变密是高密度电子产品的特性,而大多数的高阶电子产品也需要较高的信赖度,故越来越多的产品被要求进行ECM/SIR/CAF测试,如航空产品、汽车产品、医疗产品、服务器等,以确保产品在相对恶劣的使用条件下的寿命与可靠性;
离子迁移既然是绝缘信赖度的杀手,因此高密度电子产品都十分在乎及重视材料的吸水性及水中不纯物的控管,因为这些正是离子迁移的重要元凶 。例如:加水分解性氯、电镀液中的盐类、铜皮表面处理物、防焊漆的添加物……等等 。一旦疏忽了这些控管,导致ECM或CAF的生成,便会造成产品在使用寿命及电性功能上的障碍;
藉着控制卤素及金属盐类的含量、铜皮上的铬含量、树脂中的氯含量、表面清洁度(防焊前处理),这些对绝缘劣化影响很大的项目,可以大幅提升高密度电路板的信赖性 。
ECM/SIR/CAF的原理
【CAF的原理与解决方案】离子迁移的两大阶段
离子迁移发生的主因是树脂与玻纤之间的附着力不足,或含浸时亲胶性不良,两者之间一旦出现间隙(Gap)后,又在偏压驱动之下,使得铜盐获得可移动的路径后,于是CAF就进一步形成了 。