c/c++linux 深入浅出 TCP/IP 协议栈( 三 )


c/c++linux 深入浅出 TCP/IP 协议栈

文章插图
 
UDP数据包由首部和数据两部分组成,首部长度为8个字节,主要包括源端口和目标端口;数据最大为65527个字节,整个数据包的长度最大可达到65535个字节 。
UDP协议比较简单,实现容易,但它没有确认机制,数据包一旦发出,无法知道对方是否收到,因此可靠性较差,为了解决这个问题,提高网络可靠性,TCP协议就诞生了,TCP即传输控制协议,是一种面向连接的、可靠的、基于字节流的通信协议 。简单来说TCP就是有确认机制的UDP协议,每发出一个数据包都要求确认,如果有一个数据包丢失,就收不到确认,发送方就必须重发这个数据包 。
为了保证传输的可靠性,TCP 协议在 UDP 基础之上建立了三次对话的确认机制,也就是说,在正式收发数据前,必须和对方建立可靠的连接 。由于建立过程较为复杂,我们在这里做一个形象的描述:
主机A:我想发数据给你,可以么?
主机B:可以,你什么时候发?
主机A:我马上发,你接着!
经过三次对话之后,主机A才会向主机B发送正式数据,而UDP是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发过去了 。所以 TCP 能够保证数据包在传输过程中不被丢失,但美好的事物必然是要付出代价的,相比 UDP,TCP 实现过程复杂,消耗连接资源多,传输速度慢 。
TCP 数据包和 UDP 一样,都是由首部和数据两部分组成,唯一不同的是,TCP 数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常 TCP 数据包的长度不会超过IP数据包的长度,以确保单个 TCP 数据包不必再分割 。
总结一下,传输层的主要工作是定义端口,标识应用程序身份,实现端口到端口的通信,TCP协议可以保证数据传输的可靠性 。
4、应用层
理论上讲,有了以上三层协议的支持,数据已经可以从一个主机上的应用程序传输到另一台主机的应用程序了,但此时传过来的数据是字节流,不能很好的被程序识别,操作性差 。因此,应用层定义了各种各样的协议来规范数据格式,常见的有 HTTP、FTP、SMTP 等,HTTP 是一种比较常用的应用层协议,主要用于B/S架构之间的数据通信,其报文格式如下:
c/c++linux 深入浅出 TCP/IP 协议栈

文章插图
 
在 Resquest Headers 中,Accept 表示客户端期望接收的数据格式,而 ContentType 则表示客户端发送的数据格式;在 Response Headers 中,ContentType 表示服务端响应的数据格式,这里定义的格式,一般是和 Resquest Headers 中 Accept 定义的格式是一致的 。
有了这个规范以后,服务端收到请求以后,就能正确的解析客户端发来的数据,当请求处理完以后,再按照客户端要求的格式返回,客户端收到结果后,按照服务端返回的格式进行解析 。
所以应用层的主要工作就是定义数据格式并按照对应的格式解读数据 。
5、全流程
首先我们梳理一下每层模型的职责:
链路层:对0和1进行分组,定义数据帧,确认主机的物理地址,传输数据;
网络层:定义IP地址,确认主机所在的网络位置,并通过IP进行MAC寻址,对外网数据包进行路由转发;
传输层:定义端口,确认主机上应用程序的身份,并将数据包交给对应的应用程序;
应用层:定义数据格式,并按照对应的格式解读数据 。
然后再把每层模型的职责串联起来,用一句通俗易懂的话讲就是:
当你输入一个网址并按下回车键的时候,首先,应用层协议对该请求包做了格式定义;紧接着传输层协议加上了双方的端口号,确认了双方通信的应用程序;然后网络协议加上了双方的IP地址,确认了双方的网络位置;最后链路层协议加上了双方的MAC地址,确认了双方的物理位置,同时将数据进行分组,形成数据帧,采用广播方式,通过传输介质发送给对方主机 。而对于不同网段,该数据包首先会转发给网关路由器,经过多次转发后,最终被发送到目标主机 。目标机接收到数据包后,采用对应的协议,对帧数据进行组装,然后再通过一层一层的协议进行解析,最终被应用层的协议解析并交给服务器处理 。
6、总结
以上内容是对TCP/IP四层模型做了简单的介绍,而实际上每一层模型都有很多协议,每个协议要做的事情也很多,但我们首先得有一个清晰的脉络结构,掌握每一层模型最基本的作用,然后再去丰富细枝末节的东西,也许会更容易理解 。


推荐阅读